Efficient, Differentially Private Point Estimators

نویسنده

  • Adam D. Smith
چکیده

Differential privacy is a recent notion of privacy for statistical databases that provides rigorous, meaningful confidentiality guarantees, even in the presence of an attacker with access to arbitrary side information. We show that for a large class of parametric probability models, one can construct a differentially private estimator whose distribution converges to that of the maximum likelihood estimator. In particular, it is efficient and asymptotically unbiased. This result provides (further) compelling evidence that rigorous notions of privacy in statistical databases can be consistent with statistically valid inference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially Private Learning of Structured Discrete Distributions

We investigate the problem of learning an unknown probability distribution over a discrete population from random samples. Our goal is to design efficient algorithms that simultaneously achieve low error in total variation norm while guaranteeing Differential Privacy to the individuals of the population. We describe a general approach that yields near sample-optimal and computationally efficien...

متن کامل

Differentially Private Testing of Identity and Closeness of Discrete Distributions

We study the fundamental problems of identity testing (goodness of fit), and closeness testing (two sample test) of distributions over k elements, under differential privacy. While the problems have a long history in statistics, finite sample bounds for these problems have only been established recently. In this work, we derive upper and lower bounds on the sample complexity of both the problem...

متن کامل

Differentially Private Projected Histograms: Construction and Use for Prediction

Privacy concerns are among the major barriers to efficient secondary use of information and data on humans. Differential privacy is a relatively recent measure that has received much attention in machine learning as it quantifies individual risk using a strong cryptographically motivated notion of privacy. At the core of differential privacy lies the concept of information dissemination through...

متن کامل

A Minimax Distortion View of Differentially Private Query Release

We consider the problem of differentially private query release through the synthetic database ap-proach. Departing from the existing approaches that guarantee the accuracy for queries in a specificquery set only, we advocate a minimax distortion approach where query-set independent differentiallyprivate mechanisms are devised, with an ambitious goal of providing accurate answer...

متن کامل

Convergence Rates for Differentially Private Statistical Estimation

Differential privacy is a cryptographically-motivated definition of privacy which has gained significant attention over the past few years. Differentially private solutions enforce privacy by adding random noise to a function computed over the data, and the challenge in designing such algorithms is to control the added noise in order to optimize the privacy-accuracy-sample size tradeoff. This w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0809.4794  شماره 

صفحات  -

تاریخ انتشار 2008